

Introducing Nanotechnology: Where we are & where we are going

Presented by Philippe Van Nedervelde Executive Director, Foresight Nanotech Institute Europe

January 2006
© Foresight Nanotech Institute 2006
www.foresight.org

Presentation Overview

- Foresight overview
- Nanotechnology where are we?
- Short-term vs. Long-term
- Overview of the field
- Foresight Nanotechnology Challenges
- Roadmap Initiative
- What's Next?

Foresight Overview - 1

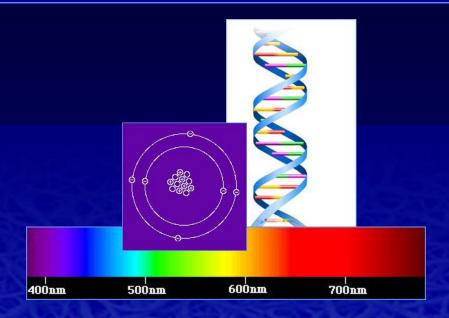
- Founded in 1986 by Drexler & Peterson
- Created and popularized concept of "nanotechnology"
 - Molecular nanotechnology (MNT)
 - Molecular manufacturing (MM)
 - Molecular machine systems (MMS)
- 4 Books published, many inspired
- Foresight Guidelines
- Numerous white papers, articles, briefings, essays, ...
- Top 5 "nanotechnology" Web site

Foresight Overview - 2

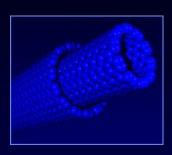
- 54 Foresight Update newsletters
- 12 major conferences and Senior Associate gatherings
- Awarded 18 Feynman Prizes, several others
- Helped catalyze establishment of U.S. NNI
- Extensive placement in the press worldwide
- Leading public policy voice
- Reaches 14,000+ people via email
- Staff of 10
- Think tank and public interest organization

Where Are We?

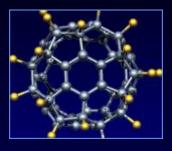
- VERY early
- IT before the integrated circuit
 - Early 60's
- Biotech before recombinant DNA
 - Early 70's
- Long term vs. short term

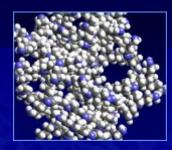


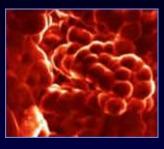
Nanotechnology Definition


- MANY definitions
- Size gives rise to new properties
 - Quantum effects
 - New physical ratios/relationships
- Building systems based on new properties
- "Nanoscale Engineering"
- Near term

"The technology of structuring and controlling matter on the scale of ~100nm and below."

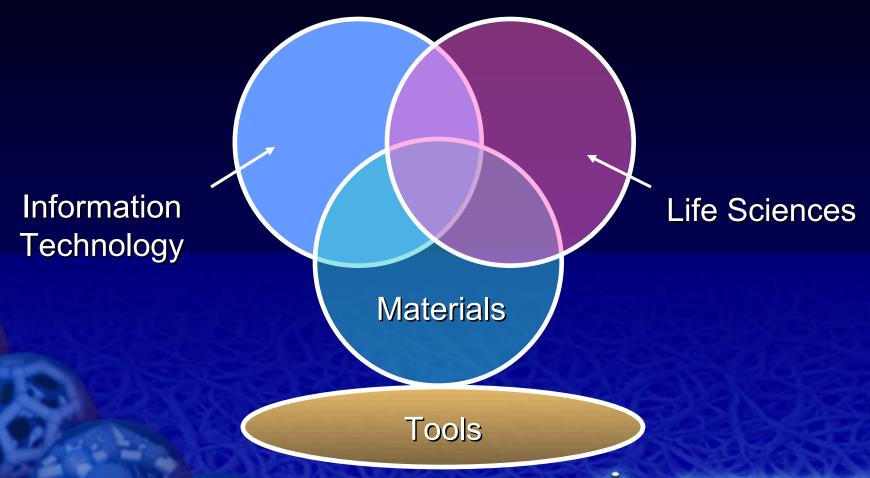

Today's Building Blocks


Nanotubes

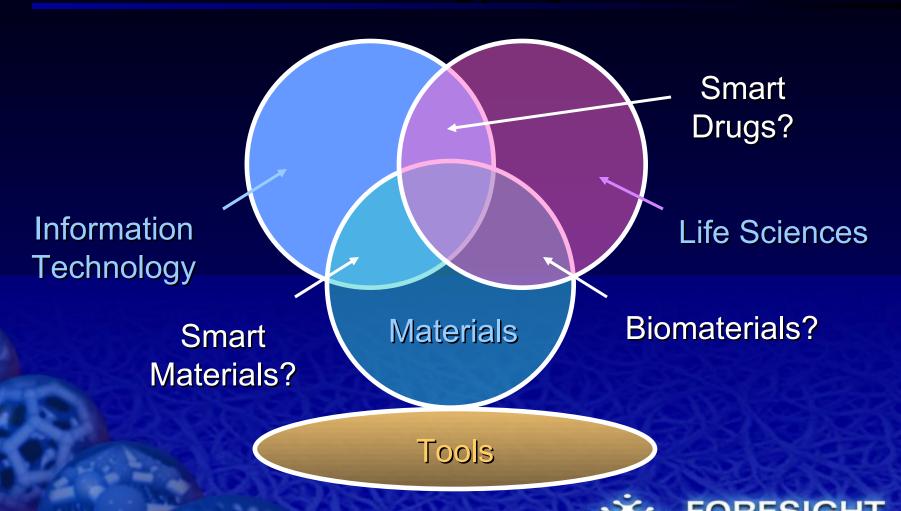

Quantum Dot

Fullerenes

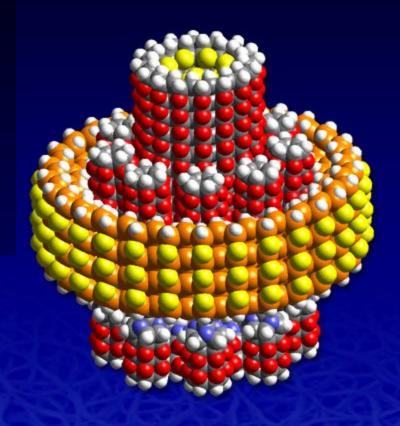
Dendrimers


Nanoparticles

Soft Lithography (Nano-imprinting, Dip-pen Lithography)



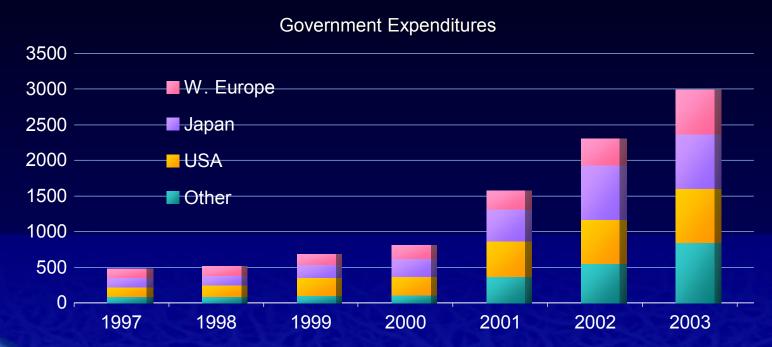
The Nanotechnology Space



The Nanotechnology Space

Molecular Nanotechnology

- "Thorough, inexpensive control of the structure of matter based on molecule-bymolecule (i.e. atomically precise) control of products and byproducts of molecular manufacturing."
 - Molecular machine systems (MMS)
 - Molecular manufacturing (MM)
- "Nanoscale Engineering" and today's building blocks are precursors
- Long term



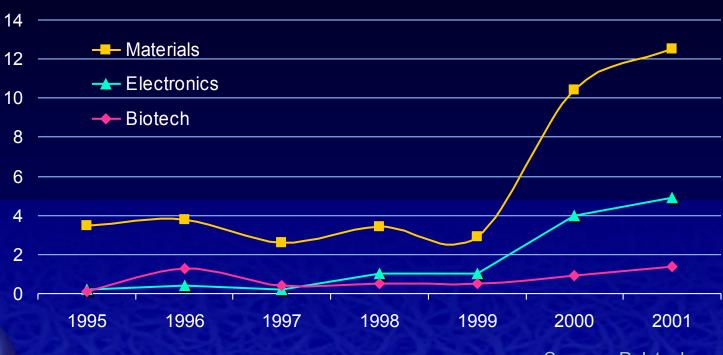
Some Key Findings & Trends

- It's NOT science fiction it's here today
- Will affect almost everything over time
- Initial impact will be subtle and gradual
 - "Plastics"
- R&D funding is unprecedented
 - Academic, government and industrial
- Spread across globe
 - Patent filing exploding worldwide
- Accelerated pace of development
 - Advances in tools will speed acceleration

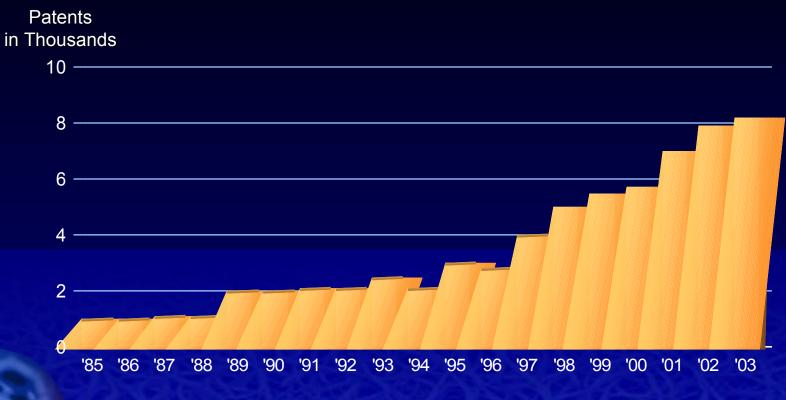
R&D Funding – 2003

Source: US National Nanotechnology Initiative

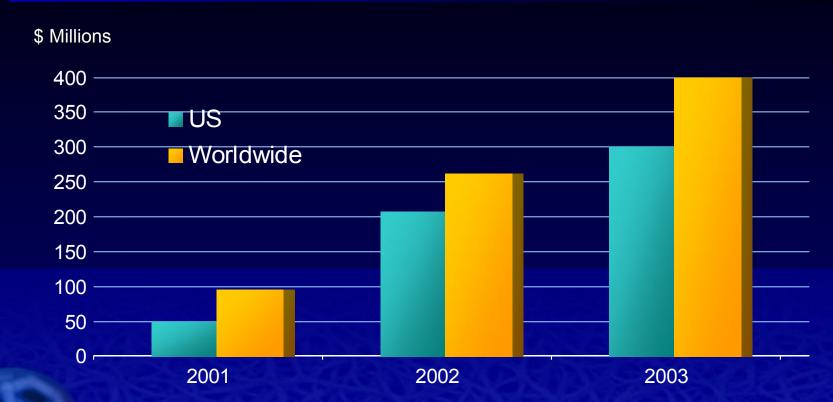
Corporations spend approximately the same amount


Patents by Language

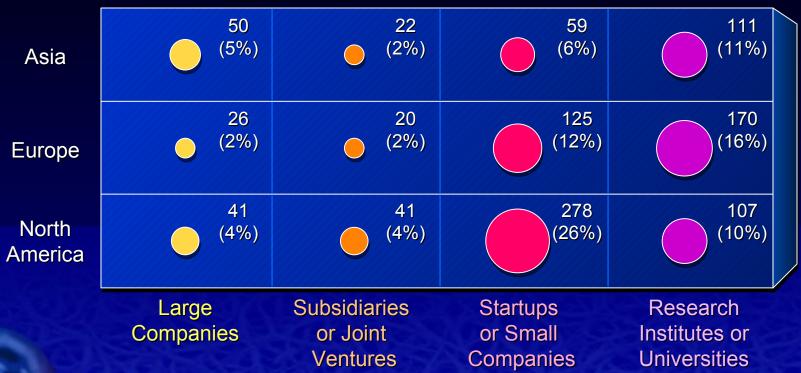
Patents by Category



Source: Polytechnos


US Patents

Venture Capital Investment



Source: Small Times

Players by Type

Size of the Bubble = Number of Actors in the Field

Source: Científica and Jaakko Pöyry Consulting, 2002

Market Impact - Near Term

Tools

Composite materials

Coatings

Catalysts

Market Impact - Medium Term

- Aerospace
- Medicine
 - Diagnostics, drug delivery
- Memories
- Display technologies
- Energy storage & distribution
 - Batteries, fuel cells, solar power

Nanotech Giants

IBM

(www.ibm.com, IBM)

HP

(www.hp.com, HPQ)

Intel

(www.intel.com, INTC)

General Electric (

www.ge.com, GE)

Cabot

(www.cabot-corp.com, CBT)

DuPont

(www.dupont.com, DD)

BASF

(www.basf.com, BF)

Engelhard (

www.engelhard.com, EC)

Rohm & Haas (

www.rohmhaas.com, ROH)

Eastman Chemical (

www.eastman.com, EMN)

Air Products (

www.airproducts.com, APD)

Chemicals & Materials

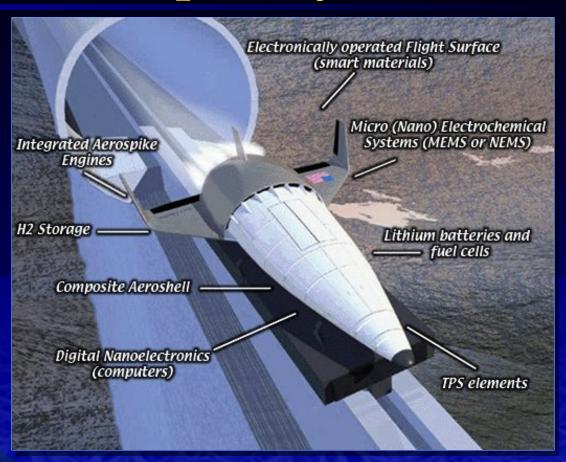
- Catalysts
- Membranes & filtration
- Coatings & paints
- Abrasives
- Lubricants
- Composites & structural materials

Medical & Pharmaceutical

- Detection, analysis & discovery
- Drug delivery
- Prosthetics
- Anti-microbial, -viral, & -fungal agents

Automotive & Transportation

- 50 components of the automobile will be affected
- Structural materials
- Coatings
- Sensors
- Displays
- Catalytic converters
- Fillers
- Power
- Etc.



Aerospace & Defense

- Structural materials
- Coatings
- Fuel
- Electronics & electromechanical systems
- Weapons
- Surveillance
- Smart uniforms
- Life support and environmental

Impact on a Space System

Source: NASA

IT & Telecommunications

- Photolithography
- Electronics & optoelectronics
 - Processors
 - Data storage, molecular memory
 - Display technologies
- Quantum computing
- Wireless technologies
- Optical transmission
- Optical switching

Energy

- Fuel cells
- Solar power
- Batteries
- Power transmission
- Lighting
- Higher efficiency appliances & devices

- High performance ski wax
- Breathable waterproof ski jacket
- Wrinkle-resistant, stain-repellent fabrics
- Deep-penetrating skin cream
- World's first OLED digital camera

- Nanotech DVD and book collection
- Performance sunglasses
- Nanocrystalline sunscreen
- High-tech tennis rackets
- High-tech tennis balls

- Footwarmers
- Washable mattress
- Golf balls and clubs
- Customized skin care
- Wound dressing for burns

- Military-grade disinfectant
- Superhydrophobic spray
- Automotive glass treatment
- Joint and muscle pain cream
- Dental adhesive

Focusing on Big Challenges

- Big Problems = Big Markets (most of the time)
- Focuses societal investments in R&D
- Significant incentive for financial investors
- Basis for diverse alliances of mutual interest
- What are the BIG problems/challenges?

The "Millennium Challenges"

- Developed by ACUNU
- Millennium Project

- 1650 experts worldwide over 8 years
- 15 Global Challenges
- Other similar lists
- Effort to focus humanity on big problems
- How can nanotechnology contribute?

Foresight Nanotech Challenges

- Meeting global energy needs with clean solutions
- 2. Providing abundant clean water globally
- 3. Increasing the health and longevity of human life
- 4. Maximizing the productivity of agriculture
- Making powerful information technology available everywhere
- 6. Enabling the development of space

Global Energy Needs

The Problem

Global Warming

- CO2 concentrations have nearly doubled
- 3 of the last 5 years hottest in recorded history
- Glaciers receding worldwide

Energy Demand

- 1.6 billion have no access to electricity
- 2.4 billion rely on burning of biomass
- Demand will increase approximately 50% by 2025
- \$16 trillion required to meet demand by 2030
- On track for only 10% renewable energy by 2025
- Fossil fuel consumption could double by 2030
- Developing world will surpass developed world

Global Energy Needs

Some Solutions

- Better fuel cells
- Better hydrogen storage
- Better solar cells
- Distributed energy generation and storage
 - Re-inventing the power grid
- Higher efficiency devices lighting, appliances, etc.

Clean Water

The Problem

- Water tables falling on every continent
- 1.1 billion don't have access to safe water
- 2.4 billion lack sanitation
- 80% of developing world diseases are water-borne
- Agriculture uses 70% of water
- 60% increase needed to feed 2 billion more by 2030

Clean Water

Some Solutions

- Inexpensive decentralized water purification
- Environmental remediation

Health and Longevity

The Problem

- Infectious disease
 - Cause of 30% of deaths worldwide
 - 30 new highly infectious diseases in last 20 years
 - HIV/AIDS, SARS, Ebola, Avian Flu
 - Reappearance and resistance to antibiotics
 - Globalization has increased exposure
 - HIV/AIDS is most critical threat
 - 22 million killed, 42 million infected
 - Leading cause of death in sub-Saharan Africa

- Cancer
 - Over 500,000 U.S. deaths annually
 - Over \$1.5 million U.S. cases annually
- Life expectancy from 65 now to 75 in 2050
 - Could be significantly longer with antiaging advancements
 - 2 billion people over 60

Health and Longevity

Some Solutions

- Inexpensive, rapid diagnostics
- New methods of drug delivery
- More effective anti-virals and antibiotics
 - Easier to store and administer
- Faster development of new drugs
- Customized drug therapy
- Repair of DNA/cellular damage

Agricultural Productivity

The Problem

- Increasing demands for nutrition, shelter, water
- World grain harvest fell short last four years
- Biodiversity being destroyed worldwide
 - 1,000,000 more species extinct by 2050
 - 1/2 of forests and 1/4 of coral reefs are gone
 - 9.4 million hectares of forest lost annually
- 8.9 billion population by 2050 (now 6.4 billion)
 - 40% in India and China today
 - 98% of growth in poorer countries
 - 5 billion city dwellers by 2030

Agricultural Productivity

Some Solutions

- Inexpensive decentralized water purification
- Plant gene therapy
 - Pest-resistant
 - Require less water
 - Higher yield
- Pest nanocides
- Precision farming nanosensors

IT Everywhere

The Problem

- Need for "planetary nervous system"
- Widespread lack of access to:
 - Communications
 - Information
 - Services and resources
- Lead to insurmountable barriers to:
 - Education
 - Democratization
 - Economic Growth
- Need to coordinate collective action

IT Everywhere

Some Solutions

- Drastically reduced cost, increased performance
 - Memories
 - Displays
 - Processors
 - Solar powered
 - Embedded intelligence
- Pervasive, self-configuring networks
- Pervasive computing and communications
 - Increasing cross cultural understanding and cooperation

Roadmap Initiative

- Established method for coordinating stakeholders
- Vision for future end state(s)
- Articulates steps from current state to end state
- Illuminates what to focus on today
- Basis for research and commercialization agenda
- First roadmap on Productive Nanosystems

What's Next?

- Collaboration of all stakeholders
- Focus on technology solutions mentioned
- Roadmapping of possible solutions
 - Basis for research and commercialization agendas
- Synergizing of technological and non-technological solutions

Resources

- Foresight Institute
 - www.foresight.org
- Millennium Project Global Challenges
 - www.acunu.org/millennium/challeng.html
- Nanotechnology Opportunity Report[™]
 - www.foresight/store
- Vision 2020 Roadmap for Nanomaterials
 - http://chemicalvision2020.org/nanomaterialsroadmap.html
- International Technology Roadmap for Semiconductors
 - http://public.itrs.net
- National Institutes of Health Roadmap
 - http://nihroadmap.nih.gov

